Логотип сайта Все о трубах
Все о трубах

  • Трубы
  • Применение труб
  • Монтаж и обслуживание
  • Разное
  1. Главная
  2. »
  3. Разное

Солнечные коллекторы зимой

Разное

  1. Отопление дома в зимнее время солнечными коллекторами
    1. Разновидности коллекторов
    2. Применение коллекторов
    3. Производительность работы гелиосистем зимой
    4. Преимущества и недостатки коллектора
    5. Заключение
  2. Как работает солнечный коллектор зимой – эффективность, проблемы и их решение
    1. Осадки и наморозь
    2. Температурные колебания
    3. Обслуживание солнечных коллекторов зимой.
    4. Как работает солнечный коллектор зимой с точки зрения эффективности?
  3. Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.
  4. Эффективность гелиосистемы в зимнее время
  5. Солнечные коллекторы зимой
    1. Эффективность гелиосистем зимой
    2. Особенность эксплуатации солнечных коллекторов зимой
    3. Бесплатное тепло зимой: миф или реальность?

Отопление дома в зимнее время солнечными коллекторами

С удорожанием природных ресурсов, используемых на освещение и обогрев дома, всё чаще приходится искать им замену – появляются альтернативные источники. Одним из таких вариантов для отопления домов стали солнечные коллекторы.

Их работа основана на поглощении излучения солнца и переработки её в тепло. Использование их летом в ясную погоду понятно. А как работает солнечный коллектор зимой, давайте попробуем разобраться вместе.

Разновидности коллекторов

Особой популярностью пользуются два вида батарей: плоские пластинчатые и вакуумные.

Плоский пластинчатый коллектор

Устройство состоит из пластины (абсорбера), которая улавливает излучение, прозрачного покрытия, пропускающего свет, и теплоизоляционного слоя. Лицевая часть пластины покрывается черной краской, потому что тёмный цвет лучше притягивает лучи солнца. Это может быть также специальное покрытие – например, оксид титана или чёрный никель. Самые производительные абсорберы изготавливают медными.

Прозрачное покрытие делают из поликарбоната, гладкого или рифлёного, либо из укреплённого стекла, у которого содержание металла очень низкое.

Теплоизоляция состоит из трубок, изготовленных из меди или сшитого полиэтилена. По ним разносится теплоноситель. Внутри панели создаётся вакуум, чтобы не было потерь тепла. Если не отбирать тепло, то воду накапливателя можно нагреть до температуры 190–210 градусов.

Вакуумные коллекторы

Трубка этого устройства, по которой течёт теплоноситель, является абсорбером. Она помещается в вакуумный сосуд из прозрачного закалённого стекла.

Такая модель дороже пластинчатого прибора, но она более продуктивна. Здесь можно нагреть воду уже до 250–300 градусов.

Применение коллекторов

Несмотря на высокую стоимость, применение гелиосистем очень популярно как в промышленности, так и в быту.

Владельцы гелиосистем используют солнечные коллекторы не только для отопления домов. Они плодотворно работают для нагрева воды в душе, подогревания бассейнов.

Для производственных целей использование этих устройств более распространено. С их помощью отапливают гостиницы и рестораны. Парогенераторы, работающие на принципе солнечных батарей, приводят в движение разные агрегаты. Опреснители воды тоже делают на основе гелиосистем.

Производительность работы гелиосистем зимой

Использование экосистем летом ни у кого не вызывает сомнений. А вот как работают солнечные батареи зимой, остаётся больным вопросом у пользователей.

Можно с уверенностью сказать, что солнечные коллекторы зимой работают. Разумеется, эффективность их снижается, и требуется дополнительный источник обогрева. Ведь зимой солнце тоже ясно светит, а в пасмурные дни абсорбер собирает отражённый солнечный свет, проходящий сквозь тучи.

Производительность батареи зависит и от угла наклона её по отношению к горизонту. Его выставляют так, чтобы максимально использовать свет в течение короткого зимнего дня.

Снегопады значительно ухудшают работу коллектора, поэтому очистка его от налипания снега – главное условие эксплуатации зимой. Снег – враг для плоского устройства. Вакуумные батареи имеют свойство нагревать всю колбу и самоочищаться. Но иногда и их приходится чистить принудительно.

Преимущества и недостатки коллектора

Главное преимущество гелиосистемы – экологическая чистота.

  • При выработке тепла в солнечных батареях не образуются никакие вредные вещества. Он абсолютно безвреден как для человека, так и для природы.
  • Очень экономичная установка. Затраты на покупку и монтирование системы возвращаются в течение нескольких лет. В последующие годы батарея работает только в плюс, экономя затраты на обогрев помещения и нагрев воды.
  • Использование системы круглый год. Зимой солнце светит не так ярко, но даже сквозь тучи к нам доходит до 75% солнечного излучения, что даёт возможность использовать гелиосистему в любое время года. Несмотря на то что в зимнее время эффективность работы снижается, установка вырабатывает до 50% необходимой энергии.

Единственным недостатком коллектора является его высокая стоимость. Не каждый может позволить себе такую роскошь.

Заключение

Солнечные батареи работают не от прямых солнечных лучей, а от самого света. Даже когда на панели лежит снег, она продолжает работать и вырабатывать энергию, пусть и в меньших количествах. А в солнечные морозные дни воду можно нагреть до кипения.

Прежде чем установить у себя гелиосистему, внимательно изучите особенности погоды в вашей местности, правильно установите угол наклона, и солнечный коллектор не подведёт ни летом, ни зимой.

Источник: ekoenergia.ru


Как работает солнечный коллектор зимой – эффективность, проблемы и их решение

Как работает солнечный коллектор зимой – этот вопрос интересует любого, кто собирается установить гелиосистему. И он действительно важен. Ведь вкладывая свои средства вы должны знать, чего ожидать от купленного оборудования.

В этой статье мы рассмотрим особенности работы вакуумных и плоских коллекторов, их производительность и нюансы эксплуатации.

Осадки и наморозь

Когда у коллектора нет доступа к прямому солнечному свету, он перестает работать. Вакуумные коллекторы могут нагревать воду или теплоноситель от рассеянного света, но их эффективность при этом снижается. Плоским панелям нужно прямое солнечное излучение, иначе они нагревают воду намного хуже вакуумных трубок. Плоские солнечные панели лучше работают летом, а принцип работы вакуумного трубчатого коллектора позволяет более эффективно греть воду зимой.

Когда поверхность панели или трубок засыпает снегом, эффективность вакуумного солнечного коллектора падает до 10-15% от номинальной, а плоских панелей – до 0%. То же самое касается инея.

В случае, если на коллекторе появляется наледь, он продолжает работать, так как она почти прозрачная и свет проникает на принимающую поверхность.

Еще одно отличие двух типов коллекторов в том, насколько они удерживают снег. С плоских панелей он легко сползает, а на вакуумных трубках задерживается, так как площадь сцепления с поверхностью больше и сама их форма этому способствует.

На вакуумные трубки часто намерзает иней и налипает снег, поэтому они нуждаются в регулярной очистке.

Температурные колебания

Качественные вакуумные трубки с напылением не отдают тепло, верхний слой не нагревается, поэтому от температуры воздуха их эффективность не зависит. Плоский солнечный коллектор отдает небольшое количество тепла в атмосферу, но оно не превышает 5% для качественных изделий.

Теплопотери обоих типов гелиосистем настолько малы, что ими можно пренебречь. Поэтому эффективность работы коллекторов не зависит от температуры.

Обслуживание солнечных коллекторов зимой.

Плоские солнечные панели

Чтобы солнечный коллектор работал эффективно, его нужно чистить от снега, инея и наледи. С плоским коллектором все просто – его можно очистить специальным скребком или пролить теплой водой.

Некоторые производители предлагают панели с системой оттаивания. Она может быть реализована по-разному, но чаще всего это дополнительный контур, через который при необходимости прокачивается горячая вода. Это небольшие энергозатраты, но с помощью такой системы нет отпадет нужда вручную чистить панели.

Вакуумный коллектор

Снег забивается между трубок, поэтому очистить их сложнее, чем поверхность плоского коллектора. На боковые стенки приходится до 20% поглощения солнечного света, а если коллектор с отражателем (рефлектором), то до 50%.

Вручную чистить вакуумные трубки сложнее чем плоскую поверхность. Чтобы облегчить этот процесс, можно закрыть коллектор корпусом с прочным стеклом – так можно упростить его очистку не потеряв производительность. Можно проливать его теплой водой, но стоит помнить что из-за перепада температур трубка может треснуть.

Как работает солнечный коллектор зимой с точки зрения эффективности?

По сравнению с летом, зимой эффективность работы вакуумного солнечного коллектора падает на 10-15%. Плоские панели работают хуже на 25-40%. Для наглядности приводим сравнительный график, на котором показано как работает солнечный коллектор зимой и летом в зависимости от его типа.

Сравнительный график, на котором показана эффективность плоских панелей и трубчатых вакуумных коллекторов в зависимости от времени года.

КПД работы солнечного коллектора зависит от уровня облачности. Если на улице солнечная погода, уровень инсоляции составляет 0,5-1 кВт/кв.м., при легкой облачности он падает до 0,1-0,2 кВт/кв.м., когда на небе темные тучи, до поверхности доходит 0,01-0,05 кВт/кв.м.

Большую роль играет продолжительность дня – зимой она в два раза меньше, чем летом. Соответственно, при самой хорошей погоде любой коллектор сможет только 50% того тепла, какое дал бы в летний сезон.

Чтобы улучшить коэффициент энергоэффективности солнечного коллектора, пожно оиспользовать его в паре с дополнительным оборудованием:

  • Тепловые насосы,
  • Газовые котлы,
  • Твердотопливные котлы,
  • Электрические обогреватели.

А для энергетической независимости нелишним будет установить альтернативные источники электроэнергии — солнечные батареи и ветрогенератор.

Как видим, эксплуатация солнечных коллекторов зимой связана с определенными сложностями. Но это не значит что они неэффективны. Просто, чтобы обеспечить отопление дома вакуумными коллекторами или солнечными панелями, нужно правильно подойти к расчету системы.

Не забудьте поделиться публикацией в соцсетях!

Источник: vteple.xyz


Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.

Эффективность гелиосистемы в зимнее время

Принимая решение о целесообразности перехода на альтернативные источники энергии и, прежде всего, на самый доступный из них – энергию солнечного излучения, Вы задаете себе следующие простые и в то же время очень важные для принятия решения вопросы:
• Какая стоимость такого устройства, и через какое время оно окупится?
• Насколько долговечен вакуумный солнечный коллектор, требует ли он технического обслуживания?
• Насколько безопасна такая система, если нарушится целостность стеклянной трубки? Что про-изойдет с тепловым коллектором? Какая жидкость используется в качестве теплоносителя, насколько она безопасна?
• Каким образом поддерживается температура в системе горячего водоснабжения здания в ночное время?
• Можно ли с помощью солнечного коллектора решить проблему отопления здания и в каком объеме?
• Можно ли использовать гелиосистему для обеспечения здания электроэнергией?
• Насколько эффективно работает гелиосистема зимой, необходим ли уход за системой в зимнее время?

Мы постараемся в доступной широкому кругу читателей форме ответить на них в последующих статьях и таким образом помочь Вам принять правильное и обоснованное решение! А сегодня дадим ответ на последний вопрос – насколько эффективно работает гелиосистема зимой, необходим ли уход за системой в зимнее время?

Лабораторией инновационных технологий УкрГГРИ на действующей гелиоустановке были произведены измерения основных параметров системы в течение трех зимних месяцев 2009 – 2010 гг. Полученные результаты измерений, проведенные расчеты и сделанные выводы мы приводим в данной статье.

Цель проводимого нами исследования заключался в том, чтобы экспериментально определить эффективность работы устройства для нагрева воды в системе горячего водоснабжения здания, с использованием энергии солнечного излучения, в зимний период. Дать практические рекомендации по повышению эффективности работы гелиосистемы в данный период года.

Эксперимент проводился на одной из двух действующих гелиосистем для подогрева воды в системе горячего водоснабжения УкрГГРИ установленной стационарно. Конструктивно вся гелиосистема предприятия состоят из двух независимых гелиосистем одной стационарной, другой установленной на поворотном устройстве. Суммарным объемом приготовления горячей воды 400 л в сутки, два бака-накопителя по 200 л. Основные и дополнительные датчики установленные в контрольных точках системы позволяют с помощью специально разработанного программного обеспечения и контроллера круглосуточно фиксировать параметры работы системы. Что позволяет как эффективно управлять работой системы, так и проводить научно исследовательскую работу, направленную на повышение эффективности работы системы в целом.

Место проведения эксперимента – г. Киев (район площади Шевченко).
Дата проведения эксперимента 1 декабря 2009 года – 28 февраля 2010 года.
Солнечный коллектор IM-HP-O58-1800-30, установленный стационарно.
Угол наклона обоих коллекторов – 45 градусов.
Бак-накопитель гелиосистемы № 1 – 200 л.
Теплоноситель – пропиленгликоль 30 %.

Описание полученных данных в ходе проведения исследования:

Период 1 декабря 2009 г. – 1 января 2010 г.
Средняя температура воздуха, tв = 5°С
Средняя температура на выходе из бака-аккумулятора, tб = 23°С
Средняя температура на выходе гелиоколлектора, tб = 17°С
Температура воды на входе в систему ГВС, tв = 7°С
Мощность гелиосистемы КВт/день в декабре, Qд = mc (tб – tв) / 3600

м – масса воды, кг,
с – теплоемкость воды, 4,183 кДж/(кг°С),
tб – температура воды в баке-накопителе после окончания нагрева, °С,
tв – температура воды в баке-накопителе до начала нагрева, °С,
Qд = 200 х 4,18 х 10 / 3600 = 2,32 КВт/день

Необходимая мощность для нагрева воды до 60°С в системе ГВС
Q = mc (60 – 7) / 3600
Q = 200 х 4,18 х 53 / 3600 = 12,3 КВт/день

Покрытие необходимой загрузки, Z = Qф х 100 / Q %
Z = 2,32 x 100 / 12,3 = 18,9 %

Период 1 января – 1 февраля 2010 г.
Средняя температура воздуха tв = 0°С
Средняя температура на выходе из бака-акумулятора tб = 27°С
Средняя температура на выходе гелиоколлектора tб = 36°С
Температура воды на входе в систему ГВС tв = 7°С
Мощность гелиосистемы КВт/день в январе Qя = mc (tб – tв) / 3600
Qя = 200 х 4,18 х 20 / 3600 = 4,64 КВт / день
Необходимая мощность для нагрева воды до 60°С в системе ГВС
Q = mc (60 – 7) / 3600
Q = 200 х 4,18 х 53 / 3600 = 12,3 КВт/день
Покрытие необходимой загрузки, Z = Qф х 100 / Q %
Z = 4,64 x 100 / 12,3 = 38 %

Период 1 февраля 2010 года –1 марта 2010 года
Средняя температура воздуха tв = 0°С
Средняя температура на выходе из бака-аккумулятора tб = 35°С
Средняя температура на выходе гелиоколлектора tб = 40°С
Температура воды на входе в систему ГВС tв = 7°С
Мощность гелиосистемы КВт/день в феврале Qф = mc (tб – tв) / 3600
Qф = 200 х 4,18 х 28 / 3600 = 6,50 КВт/день
Необходимая мощность для нагрева воды до 60°С в системе ГВС
Q = mc (60 – 7) / 3600
Q = 200 х 4,18 х 53 / 3600 = 12,3 КВт/день
Покрытие необходимой загрузки, Z = Qф х 100 / Q %
Z = 6,50 x 100 / 12,3 = 52,8 %

Полученные данные сведены в таблицу 1:

Особенностями эксплуатации гелиосистемы в зимний период являются:
1. Уменьшение полезной площади гелиоколлектора за счет покрытия снегом и появления инея в утреннее время, рис. 6.
2. Увеличение потерь тепла за счет дополнительного охлаждения теплоносителя в коллекторе, в местах, где он проходит на открытых участках, рис. 7.

Выводы:
1. Гелиосистема в зимнее время работает.
2. Экономия энергоресурсов при использовании гелиосистемы в зимнее время составляет более 30 %.
3. Гелиосистема в зимний период эксплуатации требует ухода по очистке солнечного коллектора от снега.
4. Автоматика управления работой гелиосистемы должна быть адаптирована под условия эксплуатации в зимний период.

Источник: alternativenergy.ru


Солнечные коллекторы зимой

Бесперебойная подача горячей воды для отопления помещения или общего пользования независимость от коммунальных служб и сезонности, а главное – резкое сокращение ощутимых затрат в бюджете семьи на коммунальные платежи– всё это доступно каждому с установкой солнечного коллектора.

Жарким летом, когда уровень солнечного излучения наиболее высокий, полученную тепловую энергию можно расходовать на ГВС, полностью (и бесплатно!) покрывая потребность в горячей воде. Избыток тепловой энергии легко направить на обогрев воды в бассейне открытого или закрытого типа. В более прохладные сезоны, кроме традиционного отопления здания и ГВС, с помощью солнечного коллектора можно поддерживать нужный климат в теплицах, отапливать бани и коттеджи. Справляется со своими функциями солнечный коллектор и зимой.

Эффективность гелиосистем зимой

В холодное время года счета за коммунальные услуги возрастают, как минимум, в два раза. Больше энергии, и соответственно, денежных средств, уходит на поддержание тепла в квартире, доме, офисе и любом промышленном помещении. При этом батареи часто оказываются еле теплыми, а температура в помещении не обеспечивает комфорт и безопасное для здоровья проживание. Работа установки зимой позволяет значительно снизить расходы на отопление и использование горячей воды.
Количество тепла, которое вырабатывается в холодное время года, зависит от множества факторов, например:
— общая эффективная площадь поглощения коллекторов,
— угол наклона коллекторов,
— географическое расположение и особенности климата.
Количество осадков и число пасмурных дней непосредственно влияют на работу и эффективность солнечных коллекторов зимой. Только учитывая вышеуказанные факторы, можно собрать необходимую гелиоколлекторную установку, которая максимально удовлетворит потребность в тепле и горячей воде. Изучая отзывы на солнечные коллекторы зимой, можно с уверенностью сказать, что подбор и расчет оборудования стоит доверить профессионалам DUALEX.

Особенность эксплуатации солнечных коллекторов зимой

Чудес не бывает — в холодное время года, когда температура окружающей среды падает ниже 0°C, а погода не так часто радует солнечными деньками, снижается и производительность коллекторов. Поэтому подбирая такую установку необходимо сразу учитывать возможность эксплуатации и отопления дома солнечными коллекторами зимой в период минимальной активности солнца.
При отрицательной температуре вакуумные коллектора продолжают успешно работать. Это объясняется следующими факторами:
1. Цилиндрическая форма трубок позволяет улавливать лучи под разным градусом. Это означает, что коллектор работает и с утра, и на закате дня, независимо от того, попадают ли прямые солнечные лучи на него под 90 о или нет. Работают они и в пасмурную погоду – коллектор улавливает рассеянные лучи Солнца.
2. Значительно меньшие теплопотери (по сравнению с плоскими коллекторами). Более 92% полученной энергии преобразовывается и направляется в контур отопительной системы. При этом работать солнечный коллектор зимой может в условиях до -35°C.
3. Установка под оптимальным углом наклона способствует как повышению КПД, так и, при значительных осадках зимой, влияет на самоочищение коллектора. Снег буквально сползает с трубок, оставляя их поверхность чистой.
Чтобы солнечный коллектор зимой работал максимально эффективно, все расчеты, подбор оборудования, установку и подключение системы стоит доверить специалистам DUALEX.

Бесплатное тепло зимой: миф или реальность?

Для заказа обратного звонка или связи со специалистом воспользуйтесь формой ниже или звоните по телефону

+7 (495) 640-70-49, +7 (985) 923-35-37

Бесплатно произведем расчеты и ответим на все Ваши вопросы.

Источник: du-alex.ru


Читайте также  Запах канализации в квартире
Миниатюра к статье Солнечные коллекторы зимойМиниатюра к статье Солнечные коллекторы зимой
Поделитесь статьей в соц. сетях:
Вам также может быть интересно:
  • Коллекторная разводка труб
  • Солнечная система отопления
  • Воздушный солнечный коллектор для отопления
  • Самодельные солнечные коллекторы для отопления дома

Станьте первым!

Оставьте комментарий
Нажмите, чтобы отменить ответ.

Данные не разглашаются. Поля, помеченные звездочкой, обязательны для заполнения

Свежие записи:
  • Трубы водогазопроводные сортамент

    Труба Водогазопроводная ( Труба ВГП) ГОСТ 3262-75 Труба водогазопроводная стальная (ГОСТ 3262-75) К

  • Трубы в ванной
  • Трубы бир пекс
  • Трубы безнапорные
  • Трубчатый утеплитель
  • Информация для правообладателей
  • Политика конфиденциальности
© 2021 ~ Все о трубах ~ ~ Разработка WP-Fairytale